
 
  

STO-MP-AVT-324 10 - 1 

Surrogate-Based Conception for Aerodynamic/Stealth Compromise 

E. Garnier, S. Langlet, P. Klotz, J. Cadillon, J. Simon, J. C. Castelli, D. Levadoux  
 

 ONERA, Université Paris Saclay, F-92190 Meudon  
FRANCE 

Eric.Garnier@onera.fr 

 

Keywords: Surrogate modeling, aerodynamics, stealth. 

ABSTRACT  
Specifications related to radar signature reduction are nowadays taken into account from the preliminary conception 
stage in the design of military aircrafts (missile, UCAV, manned fighters). The performance level required in terms of 
Radar Cross Section (RCS) reductions constrains the design and competes with traditional disciplines such as 
aerodynamics. The present work aims at optimizing the planform of an UCAV (Unmanned Combat Aerial Vehicle). The 
idea is to search the best compromise solutions for the multi-objective optimization problem in presence of antagonist 
criteria. The RCS is evaluated by means of asymptotic and exact computation methods by varying the bearing angle of 
the incident wave. Several frequencies between 100 MHz and 3 GHz were chosen and the polarization is fixed. On the 
aerodynamic side, the lift to drag ratio (L/D) has been chosen as a merit function. Moreover, the computation of the 
pitching moment allows identifying instable configurations. A first optimization exercise aiming at identifying the 
Pareto front in the space defined by the objective functions has been first led with only two parameters (the fuselage and 
wing sweep angles). A novel algorithm based on a coupling between a genetic algorithm (NSGA-II) and Multi-objective 
Efficient Global Optimization approach is proved to successfully to improve the description of the Pareto Front by 
means of a parsimonious iterative enrichment of the meta-models in relevant zones of the parameter space. 

1.0 INTRODUCTION 

Specifications related to radar signature reduction are nowadays taken into account from the preliminary 
conception stage in the design of aircrafts (missile, UCAV, manned fighters). The performance level 
required in terms of Radar Cross Section (RCS) reductions constrains the design and competes with 
traditional disciplines such as aerodynamics. It results in a compromise between these traditional disciplines 
and radar signature reduction which can be difficult to establish. The paper by Tianyuan & Xiongqing (2009) 
has addressed this issue focusing on the optimization of an UCAV planform. The authors have considered 
two objective functions, namely the drag coefficient and the structural weight, RCS being treated as 
constraint. A surrogate model is built for each discipline. The kriging approach has been retained and a 
multi-objective genetic algorithm (NSGA2) has been implemented to advance the optimisation process. For 
the same type of application, Pan et al. (2017) have proposed a two-step strategy which relies on a genetic 
algorithm and a local optimization to refine the parameter choice. The objective function is the drag 
coefficient, lift coefficient and RCS being considered as constraints. In a recent work, Çakin (2018) has 
proposed a multidisciplinary optimization of an UCAV planform. The objective functions are the range and 
the RCS. Statistical weight equations are used to provide an estimate of the total fuel mass which 
determinates the range. The shape is dependent of 12 parameters. The aerodynamic evaluation is similar to 
the one of the present work but the RCS evaluation is simplified, a unique frequency computed with physical 
optics method being considered. The meta-modelling is based on the MARS approach (Multivariate 
Adaptive Regression Splines). 

In the same way as in the previous references, the ONERA internal project AERODIS aims at proposing a 
coupling methodology between aerodynamics and electromagnetism. The optimization of an UCAV 
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planform is also retained as a goal for this exercise. The idea is to search the best compromise solutions for 
the multi-objective optimization problem in presence of antagonist criteria. A challenge of this study is to 
share the tools between disciplines in order to conduct efficiently a multidisciplinary optimization. This first 
attempt is limited to aerodynamics and electromagnetism but the present optimization strategy is built to 
support the addition of new disciplines (structure, materials). To this end, an approach based on meta-models 
which are intended to be enriched in the most parsimonious way to find a good compromise between 
exploration of the design space and exploitation of the best existing solution has been developed. A 
significant part of our efforts was devoted to address the issue of limited calls to the disciplinary solvers 
which is of major importance when the problem dimension increases. 

The paper is organized as follows. In Section 2, the parametrisation of the problem is exposed. The section 3 
is devoted to the presentation of the tools used to evaluate the aerodynamics figure of merit. In section 4, the 
specificities of the tools employed to evaluate the RCS are exposed and examples of RCS results are 
highlighted. The optimization process is detailed in section 5 underlining the specificities of the Kriging 
EGO based surrogate modelling approach and demonstrating the capacity of the method to propose a 
parsimonious enrichment of the database converging toward a good compromise between good aerodynamic 
performance and low RCS.  

2.0 SHAPE PARAMETRIZATION 

The choice of the planform is performed first in initial design phases of an UCAV. It is more influential on 
the global architecture and the global performances in terms of aerodynamics and RCS than the airfoil 
profile shape for example. The latter includes in particular the specification of the leading edge radius which 
will be treated in a forthcoming work. The shape parametrization retained for this study is presented in 
Figure 1. Four main parameters have been selected, namely, the two sweep angles, the wingspan (L) and the 
wing chord (c). The fuselage length is essentially the sum of the engine, intake and nozzle lengths. The two 
latter being in practice a slowly varying function of the engine diameter, the fuselage length is very 
constrained and cannot vary significantly. One reasonable assumption is then that the fuselage length is 
constant (and chosen equal to 10 m in this study). In the same way, landing gear, weapon bay, and fuel tank 
impose that the fuselage volume has to be sufficient. For this reason, the fuselage width has been chosen 
equal to 1/3 of the length. Using this parametrization it is possible to represent most of existing UCAV 
typical shapes at the exception of wing tip sweep angle for which an additional parameter would be 
necessary. The fuselage volume contours have been strongly inspired from the ones of the X47B. The airfoil 
profile is a NACA 64-212. In this paper, the case with only two parameters (the fuselage and the wing sweep 
angles) is considered. The half wingspan is taken equal to 3.5 m and the chord is set to 2.5 m. The case for 4 
parameters is the subject of an ongoing work.  

 

Figure 1: Parametrization of the UCAV. 
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The sweep angles are both allowed to vary between 30 and 60 degrees. A LHS algorithm (Swiler et al, 2006) 
has permitted to generated 20 shapes homogeneously distributed in the two-parameter space. The diversity 
of the generated shapes is illustrated by the Figure 2.  

 

Figure 2: The 20 UCAV initial geometries generated by the LHS algorithm. 

3.0 AERODYNAMIC FIGURE OF MERIT EVALUATION 

The CANOE suite which is based on the non-structured Euler solver SU2 has been employed. The friction is 
estimated by considering that it is equal to the one of a flat plate of same surface as the UCAV. Classical flat 
plate friction correlations are then used. The Figure 3 shows the comparison of the pressure distribution on 
the suction side of generic UCAV called SWIFT whose shape has been retained in the RTO group AVT 298 
for a Navier-Stokes solver (elsA) and for CANOE. The agreement is more than reasonable even if the 
recompression at the trailing edge is underestimated by CANOE. The latter has been eventually selected for 
this study. 

  

Figure 3: Pressure distribution on the SWIFT model. Left: CANOE (Euler) computation. Right: elsA (Navier-
Stokes) computation. 

 

Figure 4 illustrates the pressure field for two individuals of the present study. The rightmost one has a better 
L/D but is statically unstable whereas the leftmost one is stable at the price of an inferior L/D. This clearly 
highlights the necessity of considering the stability which introduces a frontier in the parameter space 
discarding the best individuals in terms of L/D. The stability has been computed considering that the mass 
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distribution in the UCAV is homogenous. It is a strong assumption which is wrong in practice but useful to 
avoid devoting too much time to the development of a structure module. Nevertheless, future work will 
include such a module. The UCAV mass is fixed (13.3 tons). Even if the projected surface is the same for 
every individual, the lift coefficient is configuration-dependent and an inner loop insures that the incidence is 
adapted to balance weight for each individual assuming the linearity of the lift coefficient between 2 and 4 
degrees of angle of attack. Considering a Mach number equal to 0.75 and an altitude of 8 km, typical value 
of the lift coefficient is 0.16. The computation of the pitch moment allows determining the static margin. 
Considering the fact that an active control can accommodate for some static instability, a negative margin 
equal to 35% of the cord has been considered as acceptable. This figure is highly debatable but does change 
the rationale of the optimization process. Aerodynamic results in terms of L/D will be presented in the 
section 5.  

  

Figure 4: Mach number distribution on the suction side. Left: individual number 11 (stable). 
Right: individual number 4 (unstable). 

4.0 RADAR CROSS SECTION FIGURE OF MERIT EVALUATION 

Two software have been used to compute RCS. The first one named Maxwell3D is an “exact” solver 
developed at ONERA resolving the Maxwell equations. It is based on a direct solver or an iterative one. The 
formulation of the problem can rely on Electric Field Integral Equations, Magnetic Field Integral Equations 
or a combination of the two former termed Combined Field Integral Equations. The choice of formulation 
depends on the size, complexity and expected precision of the considered case. 

The second software is SE-RAY-EM (also called FERMAT) developed by the company OKTAL-SE based 
on active scientific participation of Onera. This solver is based on an asymptotic model and on ray tracing. 
The ray tracing allows a geometrical exploration with incident beam permitting a fast discretization of the 
target. The main electromagnetic interactions taken into account are the geometrical optics, physical optics 
and edge diffraction for metal objects.  

Three different frequencies, corresponding to different class of threats for the UCAV, have been considered 
in this study: 100 MHz, 500 MHz and 3 GHz. The RCS of the UCAV illuminated by a beam at a frequency 
of 3 GHz is computed with FERMAT whereas the RCS corresponding to the two other frequencies are 
computed with Maxwell3D. The choice of the tool is a compromise between precision, limiting method and 
computation time: the condition of large target with respect to the wavelength is not well verified for the 2 
lowest frequencies.  

For the 3 calculated frequencies, the bearing angle is varied from 0 to 70 degrees (from 180 to 250 degrees in 
the convention of the solver). The sole elevation angle is fixed to -5 degrees. A polarization HH is 
considered. The discretization step in bearing angle is equal to 0.2 degree for the 3 GHz frequency and 1 
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degree for 500 MHz and 100 MHz. These angular steps are consistent with the Shannon criterion for the 
dimension of the target studied.The maximum and median values of the RCS are gathered for each 
frequency and individuals in Figure 5.  

Maximum value : 

   
100 MHz 500 MHz 3 GHz 

 

Median value : 

   
100 MHz 500 MHz 3 GHz 

Figure 5: Top: numbering of the individuals. Middle: maximum value of the RCS for each frequency. 
Bottom: median value of the RCS for each frequency. 

 

It can be observed that considering the maximum value, the individual number 10 is the best for every 
frequency. Considering the median value, individuals 1 and 4 are the best ones. The individual number 1 has 
to be preferred for the two lowest frequencies whereas individual number 4 should be chosen for the highest 
one. Nevertheless, a peak value or a median value is not necessary meaningful to characterize the radar 
survivability. In this work, it has been proposed to retain as an objective function for RCS the sum over the 3 
frequencies of the number of points which exceed a certain detection threshold (which is frequency 
dependent). The results with this objective function will be presented in the next section.  

5.0 OPTIMIZATION5.1Surrogate-Based Optimization 
Design of complex engineering systems is a time consuming process due to the cost of high-fidelity 
simulations and the large number of simulations required. To be able to provide optimal designs in a 
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reasonable period of time, high-fidelity simulations are substituted in the process by cheap-to-evaluate 
surrogate models, also known as metamodels or response surface models (Forrester et al., 2008).  

Surrogate-Based Optimization (SBO) is a black-box optimization algorithm based on the evaluation of both 
objective and constraints functions by mean of surrogate models (cf. Figure 6 for the general framework of 
the optimization process). To mitigate the low accuracy of these models which limits the convergence of the 
optimization process, models are enriched by the addition of new sample points prior to their reconstruction 
(online framework).  

Surrogate models are analytical expressions characterized by their negligible evaluation time, resulting from 
statistical learning and a design of experiments (DOE) (Wang et al, 2007). Most well-known models are 
artificial neural networks (Dreyfus, 2005), Radial Basis Functions (RBF) networks (Regis et al., 2005), 
Kriging, Support Vector Regression (SVR), etc. (Liu et al, 2018). 

 

 

Figure 6: Online Surrogate-Based Optimization framework 
 

5.2 Bayesian Optimization 
Kriging (Kleijnen, 2009) is a probabilistic surrogate model: it considers that the output is a realization of a 
Gaussian process, conditioned by the design of experiments. Thanks to this characteristic, Kriging models 
consist in not only offering a prediction of the objective function at every location of the design space but 
also an estimate of the related uncertainty. To build such models it is required to choose a prior distribution 
and then to compute a posterior distribution using the likelihood of the samples. Then Bayesian optimization 
(Rasmussen, 2003) is a three-step process: it creates a kriging model using a regression method, maximises 
an acquisition function to decide where to sample and finally updates the posterior distribution. Two last 
steps are repeated until convergence. In this process, the acquisition function is the key point to 
simultaneously reduce the model uncertainty along the exploration phase and improve the prediction near the 
optimum along the exploitation phase. The technique of Efficient Global Optimization (Jones et al., 1998) 
based on the Expected Improvement function (EI) estimates the expectation of improving the knowledge of 
the minimum of the function in comparison with the best individual of DOE. Its formulation combines both 
high predicted variance and promising minima to improve global exploration and local optimality. The 
efficiency of this optimization strategy comes from the parsimonious enrichment, essential since high fidelity 
simulations are usually very expensive. The principle of the kriging which relies on the knowledge of the 
error associated to the model. As illustrated by Figure 7, the exploitation of this error and of the modelled 
values of the function are combined to define the enrichment zone associated to a high expected 
improvement. 
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Figure 7: Bayesian Optimization with Expected Improvement 

5.3 Multi-objective Bayesian Optimization with MOEGO NSGA-II 
The EI acquisition function has been generalized in the multi-objective framework (MOEI) to determine the 
added point the most susceptible to improve the Pareto Front (PF). In this context, the acquisition function 
replaces in its formula the best individual of DOE with the Pareto front individuals. Unfortunately, the 
maximization of EI for multiobjective optimization has two drawbacks. Firstly, it is by definition optimal 
only for one-step-ahead methods so the use of this acquisition function is not suited to distributed 
computations. Secondly, the exploration of the design space can be insufficient for high dimensional design 
spaces. To overcome those restrictions, a combined strategy sequentially enriches the DOE with distributed 
computations is newly proposed in the MOEGO NSGA-II algorithm (Guerra, 2016). Firstly the genetic 
algorithm NSGA-II (Deb et al., 2002) is used to search initialization points for the maximization of the EI 
criterion. To achieve this goal, kriging predictions of the fitness functions are firstly minimized using the 
genetic algorithm until obtention of an optimal population. Secondly, the objective space is decomposed in 
subdomains to force the optimizer to improve the PF simultaneously in different areas. Then, for each of 
these subdomains several local maximizations of EI initialized by the NSGA-II optimal population are 
carried out. The spatial decomposition which allows distributing the search of optimal solutions by MOEI 
among the individuals of the PF indentified by the NSGA-II is illustrated by Figure 8. Finally, only the most 
interesting individuals resulting from these multiple constrained maximizations of the multi-objective EI are 
selected and then evaluated with high fidelity models. The overall enrichment procedure described above is 
illustrated by Figure 9. In presence of constraints, kriging predictions of the fitness functions are multiplied 
by the probability of feasibility. Usually, the number of subdomains is linked to the number of available 
computational cores. This strategy aims to parsimoniously decrease the uncertainty of the surrogate model 
and thus to improve the accuracy of the Pareto Front (Emmerich et al., 2002). 

 



Surrogate-Based Conception for Aerodynamic/Stealth Compromise      

10 - 8 STO-MP-AVT-324 

 

Figure 8: Maximization of EI for multi-
objective optimization through 

objective space partition with crosses 
for NSGAII solutions and circles for 

results of EI maximization 

 

Figure 9: Distributed enrichment with 
MOEGO NSGAII 

5.4 Application to aerodynamic-stealth optimization 
Although this optimization problem is multidisciplinary, aerodynamic and electromagnetic computations are 
uncoupled and though can be led without multi-disciplinary optimization methods. Hence, each discipline is 
linked to an optimization criterion and the overall optimization problem is solved by means of multi-
objective methods. The general optimization process which takes advantage of the uncoupling between the 
two disciplines is described in Figure 10. Those criteria are the lift-to-drag ratio and the percentage of bright 
points above a given threshold, computed for three observation frequencies. Moreover aircraft stability is 
ensured by adding a pitching stability constraint to the optimization problem.  

 

 
Figure 10: Aerodynamic-stealth optimization 

Surrogate-Based Optimization process starts from a 20 samples design of experiments, updated by three 
additional samples chosen by MOEGO NSGAII. Kriging models for the aerodynamic and stealth objective 
functions are plotted in Figure 11 and Figure 12 for 20 and 23 samples respectively. On the latter one, filled 
circles identify the 3 added points. The dark line indicates the boundary of the stability constraint and the 
feasibility domain extends at its right. In our problem, lift-to-drag ratio must be maximized while stealth is 
minimized. Due to the constraint, one can observe that objective functions are antagonistic: when one is 
maximal the other is far from being optimum. As often, better solutions are located along the domain 
boundary of feasible designs and the comparison between the two aforementioned figures evidences the fact 
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that the addition of new points improves the constraint boundary knowledge and thus allows finding best 
compromised solutions. 

The functioning of the process is evidenced by Figure 13 which illustrates the optimization results in the 
design and objective spaces with samples plotted with blue circles or green squares according to their 
feasibility. Besides, black crosses identify the 3 added samples. The solutions obtained by maximization of 
MOEGO (plotted as triangles) are issued from local optimization starting from NSGAII solutions (plotted as 
orange dots). MOEGO and NSGAII solutions do not differ indicating a very small kriging uncertainty. The 
Pareto Front solution defines compromised solutions between lift-to-drag ratio and stealth. Because of the 
constraint, they are surrounded by unfeasible samples. One can notice that Pareto front solutions are very 
close to each other in the design space and then their shapes are similar. In order to minimize detectability, 
the best solution could be to choose the leftmost design. But a better compromise is the individual 
surrounded by the pink ellipse which, for a modest loss in terms of detectability, improves the L/D from 11.8 
to 12.5. More generally, the PF allows the designer quantifying at which rate the gain of one objective 
function translates into a loss on the other one.  

 

  

Figure 11: Kriging models of aerodynamic (left) and stealth (right) objective functions for 20 samples 
 
 

  

 

Figure 12: Kriging models of aerodynamic (left) and stealth (right) objective functions for 23 
samples 
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Figure 13: Optimization results in the design space (left) and objective space (right) 

6.0 CONCLUSION 

 
The planform of an UCAV has been optimized both taking into account aerodynamics and 
electromagnetism. The optimization strategy relies upon a meta-model based approach, one meta-model 
being built for each discipline. A first optimization exercise aiming at identifying the Pareto front in the 
space defined by the objective functions has been first led with only two parameters (the fuselage and wing 
sweep angles). A longitudinal stability margin constrain imposes that only stable or reasonably unstable 
design are considered. Due to the constraint, a good aerodynamic performance (high L/D) is antagonist of a 
weak detectability. A novel algorithm based on a coupling between a genetic algorithm (NSGA-II) and 
Multi-objective Efficient Global Optimization approach is proved to successfully to improve the description 
of the Pareto Front by means of a parsimonious iterative enrichment of the meta-models in relevant zones of 
the parameter space. The case with 4 parameters is the topic of an ongoing work.   
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